PRACTICA DE SOLEMNE

P1. Considere que existe una biblioteca llamada wartigray, la que tiene datos de la
guerra del Tigray. En particular, nos interesan dos métodos de esta biblioteca:

dias() devuelve el nimero de dias que duré la guerra;
bajas(d) devuelve el total de bajasaldiad (0 <= d < dias()).
Escriba un programa que busque e imprima el dia con mas bajas.

P2. Un campo de batalla es representado como una lista de listas de rivales como sigue:

AN e ofoJol3[4 [[e, 0, O, 41,
AR =l o 121 1]0]0]0 [2,1,@,0 o],
sz, 113]1]0]0 [1, 3, 1, 0, 0],

e[A~ ol1[4]0]0 [0, 1, 4, 0, 0]]

Ademas, considere que tiene una lista de blancos de la forma:
[[i1,j11, [i2,j2]1, [i3,33]1, ...]
donde cada par [1, j] es de indices que refieren a una posicién en el campo.

Implemente una funcion, de nombre ataque, que reciba como parametros un campo de
batalla y un lista de blancos. La funcién debe retornar la cantidad de bajas por ataque.

Problema 3
Se estan creando planillas de cuatro columnas acerca de artes marciales. Por ejemplo:

Arte Marcial Dificultad Popularidad Representante
Aikido 9 2 steven@seagal.cl
Karate 4 9 chuck@norris.cl

Taekwondo 7 7 pata@face.cl

Esta base de datos se implementa como una lista de filas, ej:
[['Aikido', 9, 2, 'steven@seagal.cl'],
['Karate', 4, 9, 'chuck@norris.cl'],
['Taekwondo', 7, 7, 'pata@face.cl'],
o]
Preguntas

a. Implemente la funcion mas_facil(bdatos) que retorna el nombre del arte marcial
mas sencillo.

b. Implemente la funcién mas_conveniente(bdatos) que retorna el nombre del arte
marcial de mayor razon popularidad / dificultad.

c. Implemente la funcién populares(bdatos) que retorna la lista con todas las artes
marciales con popularidad > 5.

Solucién Problema 1
Procedamos como siempre lo hacemos:

1. Debemos comenzar cumpliendo con la formalidad del problema: escribir import,
def, los argumentos, etc.

2. Debemos identificar como es y como se entrega el resultado, lo que nos
permite definir las variables que debemos definir, sus valores iniciales y si
respondemaos con print o return

3. Debemos crear e implementar el algoritmo, que son los pasos o estrategia para
llegar al resultado. Al respecto,

1. Primero debemos pensar qué acciones debemos realizar para llegar al
resultado y comentar esto en la respuesta y

2. Luego debemos escribir el cédigo que implementa la estrategia de solucion
pensada.

Para este problema la formalidad nos obliga a (#1) importar la biblioteca wartigray (o
sea, comenzamos la respuesta con import wartigray). Luego identificamos qué se desea
obtener: el dia con mas bajas. Como son dos datos (que van mano a mano), (#2)
definimos ambas variables al principio. Al final, (#6) respondemos con un print que reporta
el dia.

Respecto del algoritmo, hacemos esto: (#2) comenzamos con una respuesta tentativa.
Luego, (#3, #4) revisamos cada dia viendo las bajas ocurridas y (#5) contrastamos con la
respuesta tentativa. (#5) Si hubo mas bajas que en la respuesta tentativa, cambiamos la

respuesta tentativa por el dia analizado en cuestion. Siguiendo el procedimiento anterior,
debemos quedarnos con el dia con mas bajas.

1. importamos la biblioteca
import wartigray

2. variables de respuesta
top_dia = @
top_mue = ©

3. obtenemos nro de dias
n_dias = wartigray.dias()

4. buscamos en dias validos
for d in range(®, n_dias):
5. vemos si es el "mejor” dia hasta ahora
if top_mue < wartigray.bajas(d):
top_dia = d
top_mue = wartigray.bajas(d)

6. reportamos
print(, top_dia, , top_mue,)

Solucion Problema 2

De nuevo, (#1) obedecemos las formalidades y definimos la firma de la funcién (def
ataque...), considerando que recibe dos argumentos/parametros. Como se pide por la
cantidad total de bajas realizadas, (#2) creamos la variable bajas como bajas=0 y (#3)
escribimos return bajas al final.

Para el algoritmo: (#4) revisamos cada par de indices en la lista de listas de blancos (0
sea, escribimos for par in blancos o similar), (#5) extraemos los indices de cada par de
indices y (#6) sumamos a la respuesta (a bajas) los rivales en camposl[i][j].

1. Tirma de la funcion
def ataque(campo, blancos)
2. variable para la respuesta
bajas = @
4. recorremos la lista de blancos
for par im blancos:
5. extraemos los indices desde par (par es de tipo [1,]j])
i = par[@]
j = par[1]
6. sumamos los rivales alcanzados
bajas += campo[i][]]
3. retornamos la respuesta
return bajas

Solucion Problema 3

Este problema tiene tres partes. Ojo que las partes a 'y b se parecen al problema 1.
P3a (los comentarios explican el razonamiento)

1. definimos la firma de la funcion (nombre, argumentos)
def mas_facil(B):
2. identificamos las variables gue necesitamos responder
r_nom = B[@][@] # B[@] es la primera fila, B[@][@] es el nombre
r_dif = B[@][1] # B[1] es la primera fila, B[@][1] es la dificultad
3. revisamos PARA CADA fila en B (o sea, usamos for)
for fila in B:
4. extraemos los campos relevantes de cada fTila
nom = fila[@]
dif = fila[1]
5. revisamos si esta arte marcial es mas Tacil que la nuestra
if dif > r_dif:
6. si asl es, guardamos como nueva respuesta candidata
r_dif = dif
I_nom = nom
3. retornamos la respuesta
return r_nom

P3b (los comentarios explican el razonamiento)

1. definimos la firma de la funcion (nombre, argumentos)
def mas_conveniente(B):
2. identificamos las variables que necesitamos responder
r_nombre = B[@] [@] # B[@] es la primera fila, B[@][@] es el nombre
r_razon = B[@][2]/B[@][1] # popularidad/dificultad para B[]
3. revisamos PARA CADA fila en B (o sea, usamos for)
for fila in B:
4. extraemos los campos relevantes de cada fila
nombre = fila[@]
razon = fila[2]/fila[1]
5. revisamos si esta arte marcial es mas facil que la nuestra
if razon » r_razon:
6. s1 asl es, guardamos como nueva respuesta candidata
r_razon = razon
r_nombre = nombre
3. retornamos la respuesta
return r_nombre

P3c

En este caso, se debe construir una lista en la respuesta. Entonces hay que recorrer todas
las filas e identificar, por cada fila, si cumple con la popularidad. Si asi es, el nombre del
arte marcial debe anexarse a la respuesta.

1. definimos la formalidad
def populares(B):
2. identificamos que vamos a responder con una lista
resp = []
4. revisamos cada fila de la lista de listas
for fila in B:
5. chequeamos si el arte marcial tiene popularidad >= 5
if fila[2] == 5:
6. anexa el nombre del arte marcial a la respuesta
resp.append(fila[@])
3. retornamos la lista que hemos construido
return resp

